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Abstract. The vanishing of the ‘fermionic-fermionic’ component of the strength tensor in 
the four-dimensional N = 1 supersymmetric Yang-Mills theory is used in the definition of 
the N = 2 supersymmetric Toda lattice. The Lax pairs and the Backlund transformations 
for this model are investigated. 

1. Introduction 

Many papers in the last decade have discussed the powerful mathematical tools 
which have been developed in completely solving many classical field theoretical 
models [ 1, 21. It was shown that many of the two-dimensional relativistically invariant 
models admit the so-called Lax pair, the Backlund transformation and the Hirota 
method [3, 41. These techniques are important in the construction of a special kind 
of solution, the so-called solitons, and are used in proving the complete integrability 
of those systems. This framework has been extended to four-dimensional gauge theories 
15, 61 as well as to supersymmetric theories 17-10] which however are formal and 
incomplete. 

For example, theoretical physics has developed a new concept of supersymmetry 
whose main idea is to treat bosons and fermions equally [ll]. Mathematically it 
amounts to incorporating anticommuting variables of Grassman type together with the 
usual commuting (c-number) variables. It is then natural to ask if the problem of 
particle-like behaviour in supersymmetric field theories leads to a theory of super- 
integrable systems. An undoubtedly affirmative answer must be left for future work, 
but at the very least one should notice that there are two different frameworks of the 
supersymmetrisation of those relativistic constructions: geometric and algebraic. 

In the geometric framework [8,9] the soliton equations are considered in the form 
of the Cartan-Maurer equations on the matrix 1-forms belonging to some Lie algebra 
of a Lie group. Then the supersymmetrisation is performed by generalisation of the 
Cartan-Maurer equation to the graded supersymmetric Lie algebras. In this way several 
interesting models have been supersymmetrised. Also the same approach has been 
applied to extended supersymmetry as, for example, for the N = 2 supersymmetric 
sine-Gordon equation [12] and Liouville equation [ 131. 

The second approach is based on the hidden symmetries of the integrable systems. 
For example Bogoyavlensky [ 141 discovered that the classical Toda lattice is connected 
with the simple Lie algebras. Then Leznov and Saveliev [15, 161 showed that the 
periodic Toda lattice corresponds to the contragradient Lie algebras. In their 
approach the vanishing of the strength tensor of the non-Abelian gauge group is 
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utilised as the definition ofthe Toda lattice. In this way they showed that the non-periodic 
Toda lattice with free endpoints can be connected with the classical Lie algebras. This 
connection enables us to investigate this system by means of the inverse scattering 
transformation ( IST). Recently Olshanetsky [ 171 generalised the two-dimensional Toda 
lattice to the supersymmetric case. His supersymmetrisation is the supersymmetrisation 
of the Bogoyavlensky correspondence. He defined the supersymmetric version of the 
Toda lattice and discovered the connection of this system with the contragradient Lie 
superalgebras classified by Kac [ 181. 

This paper contains rather formal developments of the concept of the N = 2 
supersymmetric Toda lattice the motivation for which is the same reason that classical 
Toda lattices have been studied so much recently, i.e. their occurrence in the description 
of spherically symmetric monopoles and axially symmetric instantons. It is not clear 
that the classical solution of supersymmetry is in any way relevant but one may think 
that the N = 1 and N = 2 extensions of the Toda lattice should correspond to a certain 
ansatz for fields of some supersymmetric four-dimensional self-dual Yang-Mills fields 
which should (by analogy) generalise the axially symmetrical instanton solutions of 
the ordinary Yang-Mills self-dual fields. 

In this paper we show that the N = 2  supersymmetric Toda lattice is connected 
with the geometry of the supersymmetric Yang-Mills field theory [ l l ,  191. We show 
that the vanishing of the ‘fermionic-fermionic’ component of the four-dimensional 
N = 1 supersymmetric Yang-Mills strength tensor can be used as the definition of the 
N = 2 supersymmetric Toda lattice. 

This paper is organised as follows. In § 2 we give basic notation used in the theory 
of supersymmetric Yang-Mills fields and then we formulate our ansatz which reduces 
the constraint equations to the N = 2 supersymmetric Toda lattice. In 0 3 we describe 
three different Lax pairs which are connected with the N = 2 supersymmetric Toda 
lattice. Section 4 contains the investigations of the Backlund transformation for our 
equation. Here we generalise the Kac-van Moerbecke equation to the N = 2 supersym- 
metric case and then we use these equations in the definition of the Backlund 
transformation for the N = 2 supersymmetric Toda lattice. 

2. N = 1 Yang-Mills superfield and N = 2 supersymmetric Toda lattice 

Let us consider the superspace which is the complexified super-Minkowski space 
spanned by the spacetime variables x, and four anticommuting variables On, Od.  Here 
{a, ci} are the usual two-component spinor indices and we assume that 0; = Od. where 
x stands for complex conjugation. On this space we represent the algebra of super- 
symmetry by 

Bn =a lae ,  +io, and (2.1) 
ad = -alaed -io, sad. (2.2) 

and = U: a, = alax,, (2.3) 

where 

U” = (1, e) is a set of Pauli matrices. 
This supersymmetric algebra satisfies 

{an, 9 0 1  = 0 = {%, 9 0 1  

{ an, 90} = -2i anb. 
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Following the same method as in the Sohnius paper [ 191 we define the supersymmetric 
Yang-Mills fields by the supercovariant derivatives 

9 ,=a,+iA,  (2.6) 

9, = 9, + iA, (2.7) 

9, = gad. +iA,. (2.8) 

Here A,, A,, A, is a Yang-Mills potential and spinor potential respectively and can 
be considered as the Lie-algebra valued superfield 

A, = c T’A,r(x, e,, 0,) (2.9) 
I 

(2.10) 

(2.11) 

where T’ are the gauge group generators. 

strengths 
The commutator of two supercovariant derivatives yield the six Yang-Mills field 

{9,, QP} = iF {9., 9g}=iF,a (2.12) 

{ 9 , , 9 , } = i F a ~ - 2 i 9 , ~  (2.13) 

[9,, 9.21 = iF,, [9,, 9,] = iF,& (2.14) 

[ 9 , , 9 ” l = i F , ”  (2.15) 

where {A, B} = AB + BA and [A, B] = AB - BA. 
Each tensor component of F represents a full superfield multiplet. Most of these 

components are superfluous and are usually eliminated by the constraint equations. 
For N = 1 the constraints are 

F,p = F&, = Fag = 0 

which does not provide us with a flat theory. 
The following formula 

A, = h-’9,h 

(2.16) 

(2.17) 

where h is an arbitrary superfield, is usually considered as the solution of 

F 1 1 = O = F z 2 .  (2.18) 

However, there are other possibilities for the solution of (2.18): 

A, =f,h = b,fl (2.19) 

A2 = f2b2 = b2fz (2.20) 

where fa and b, are an arbitrary fermionic f: = f: = 0 and bosonic superfield respec- 
tively such that 

9 1 b l = O = 9 2 b z  (2.21) 

9, f, = 0 = $22 f2. (2.22) 
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Assuming that we have the solution of (2.18) in the form of (2.19) and (2.20) then the 
constraint F12 = 0 gives us the equation on the functionsf, and b, which in the following 
we will consider to be the equation of motion for the supersymmetric Toda lattice. 
Indeed let us consider the SU(2) case for which we have the following ansatz: 

AI = f l  f29, In 4 .  H + 2 f 1 4 ” E t  (2.23) 

A2=f2f1921n4.  H+2f2E- (2.24) 

where H = a 3 ,  E + = i ( a l + i a 2 ) ,  E-=f(crI- iu2)  are the generators of the SU(2).  fl 

and f 2  are arbitrary four-dimensional fermionic chiral superfields, e.g. 9, fp = 0 while 
r$ = 4 ( x I l ,  x2i, e,, e,) is an arbitrary bosonic superfield such that 

9 1 4 x = 0 = 9 2 9 x  (2.25) 

where x denotes complex conjugation. 
Introducing (2.23) and (2.24) to F12=0 we find that 

a2gI In 4 = -2i4” (2.26) 

constitutes the N = 2 supersymmetric Liouville equation and coincides with the 
equation obtained by Ivanov and Krivonos [13]. 

Notice that the assumption that 9 is two-dimensional in Minkowski space and 
four-dimensional in Grassman space is equivalent to the statement that our Liouville 
equation is the N = 2 supersymmetric equation in two-dimensional spacetime. The 
conditions (2.25) are the Grassman [20] analyticity conditions. They reduce the 
complex N = 2 superfield 4 to a complex N = 1 superfield by 

4 = 4 ( ~ ~ ~ - i f 3 ~ e ~ ,  x2i-ie*e2, el, e2). (2.27) 

Equation (2.26) can be obtained from the superfield action of the form (with the solved 
conditions (2.25)) 

S =  d 2 x d 8 1 d t ? 2 ( 4 X 9 2 9 , q b - 2 i e x p ~ x ) + ~ ~  J (2.28) 

where @ = exp 4. 
Now the generalisation to the Toda lattice is straightforward. Notice that in the 

expansion (2.23) and (2.24) the generators are the linear combinations of the generators 
in the Cartan-Weyl basis and therefore constitute the Chevalley basis [21]. Hence for 
the larger group we can put 

(2.29) 

(2.30) 

where we have the following relations: 

[Hi, f41= 0 (2.31) 

[HI, €3 = *K/,E,’ (2.32) 

= ‘1Jq (2.33) 
and (KJl) = K are the elements of the Cartan matrix. Here the superfields f l  and f 2  

are the same as before and 

(2.34) 914: = 0 = 9 2 9 : .  



N = 2 supersymmetry Toda lattice 1499 

With these relations the condition FI2 = 0 gives us 

g29, In c$~H~ + 2iK1,4: HI = 0. (2.35) 

Introducing = exp V, and V, = K1&, equation (2.35) reduces to 

92914, = -2i exp (2.36) 

Equation (2.36) can be obtained from the following supersymmetric action (with 
This is our desired N = 2 supersymmetric Toda lattice. 

the solved conditions (2 .34))  

+ H C  (2.37) 

(2.38) 

where {P,} is a set of simple roots connected with a given gauge group. Indeed if we 
Put 

@, = c P:4sI(PsP*)  
I 

and we use the definition of the Cartan matrix 

K ,  = 2(PIP,)/(P,P,) 

we easily recover equation (2.36). 

(2.39) 

(2.40) 

3. The associated linear problem 

According to the IST it is necessary to represent the equation (2.36) as an integrability 
condition for the system of linear equations 

9,+ = -iU+ (3.1) 

92+ = -i V+ (3.2) 

where U and V are some operators which we want to define. Now the compatibility 
condition takes the form 

g 2 U +  9, V+i{ U V }  = 0. (3 .3 )  

We supplement this condition with 

9,9a,+ = 0 = 9, U + i  UU 

B29*+ = 0 = B1 V + i W. 

Now one can easily check that the equation FI2 = 0 is equivalent to the condition (3.3) 
if we choose the following representation of U and V: 

g1+ = -iA,+ (3 .6)  

9*+ = -iA2+ (3.7) 

where A, and A2 are the spinor superpotentials of the Yang-Mills fields. 
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However notice that in our IST there is no spectral parameter. We can introduce 

( 1 )  
it in three different ways. 

iA, 
9,$ = -- cc, l - A  

iA2 
l + A  2d2$ = -- IL. 

(3.8) 

(3.9) 

For this IST compatibility conditions (3.3)-(3.5) reduce to 

g2A1 - 91A, = O  (3.10) 

F12=O (3.11) 

A,A1 =O=AzAZ, 9IA1 = O =  92A2. (3.12) 

These conditions restrict our choice of A, but our potentials defined in the previous 
section satisfy (3.10)-(3.12). Notice that this IST is similar to the IST for the two- 
dimensional chiral models considered by Mikhailov and Zakharov [22]. There is a 
basic difference that in the chiral models the analogous equation to (3.10) plays the 
role of the equation of motion while the zero curvature condition (3.11) is trivially 
satisfied. Here the situation is quite the reverse. This correspondence also exists for 
the normal Yang-Mills field equation. It was shown by the present author [23] that 
the non-Abelian two-dimensional Toda lattice can be considered as the model of 
discrete chiral fields and in the continuum case it reduces to the three-dimensional 
self-dual sector of the Yang-Mills field. 

(2) Let us put 

U =  UOfAU1 (3.13) 

V=A- 'V0 (3.14) 

where 

Ut = 2 fl Kij4;  E (3.16) 

Vo = 2f2 1 E (3.17) 
I 

where the superfields f,, f2, 4 and the generators Hi, E :  satisfy the same conditions 
as in the previous case. 

This IST is the direct generalisation of IST from the N = 1 supersymmetric Toda 
lattice considered by Olshanetsky [ 171. The condition (3.3) gives us the equation (2.36) 
while (3.4) and (3.5) reduce to the equation (2.34), i.e. give us the Grassmannian 
analyticity of 4c 

(3)  Let us consider the IST in the following form: 

( 9 , + A 9 , ) + =  -i(A,+AA,)+ (3.18) 

which is the IST considered by Volovich [24] for the supersymmetric Yang-Mills fields. 
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In this case we have only the following condition of compatibility: 

( 9 1 + A 9 2 ) ( 9 1 + A 9 2 ) $ = 0 .  (3.19) 

Notice that our ansatz for the supersymmetric Toda lattice satisfies this IST. 

4. The Backlund transformation for the N = 2 supersymmetric SU(N) Toda lattice 

For the non-periodic SU( N )  Toda lattice there exists an auto-Backlund transformation. 
This transformation is the generalisation of the so-called Kac-Van Moerbeke equations 
to two-dimensional spacetime [ 161. Here we use the N = 2 supersymmetric version of 
the Kac-van Moerbeke equation to construct the auto-Backlund transformation for 
the N = 2 supersymmetric Toda lattice. First let us construct the N = 2 supersymmetric 
Kac-van Moerbeke equations. They can be written down as 

1 < a < r +  1, 

g1 N," = g 2 N ;  = 0 

No = 0 = N2,+2. (4.3) 

(4.4) 

Here No, 1 < a < 2 r  + 1 are arbitrary bosonic superfields such that 

while fa are fermionic superfields such that 

Moreover from the condition gIgl = 0 = B 2 a 2  it follows that 

9 l f 2 u - l =  0 = 9 2 h U .  (4.7) 
Now, as one can easily verify, the following functions 

@a = ln ( N2a - 1 N2u ) 3 @ h = In( N2, Nza + 1 ) 

satisfy the following equations: 

ti9291@a = 2 exp 4: - exp +:+1 - exp 

4i9d2914h. = 2 exp 4hx -exp 4r+l -exp 4h-l 
Q0 = = -m.= a' - o - @ L + 1 *  

Now transforming to = K,,+, where 

K,, = ( 2suB ) 
- 1 &,,*I 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 

is the Cartan matrix for the S U ( N )  group, we obtain equation (2.36). From these 
considerations we see that our Backlund transformation relates the solutions of some 
N = 2 supersymmetric Toda lattice with the second Toda lattice. Notice that for the 
SU(2) case our Backlund transformation reduces to the Backlund transformation for 
the N = 2 supersymmetric Liouville equation. However for these equations it is possible 
to define additionally two different Backlund transformations. The first is the non-auto 
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Backlund transformation which relates the N = 2 supersymmetric Liouville equation 
with the N = 2 supersymmetric d'Alembert. This can be written down as 

a2( 4 + h )  = Ax exp $( 4" - h") (4.12) 

B1( 4 - h )  = Axx exp ;( 4" + h ") (4.13) 

9 , X = ( i / A )  exp$(4"+hX)  (4.14) 

a2xx = -(i/A) exp $(4" - h")  (4.15) 

92x = 0 = alxx (4.16) 

a24" = a2hX = 9,4" = Blhx  = O  (4.17) 

Now the integrability conditions for our Backlund transformation give us the N = 2 

9 2 , 9 2 h  = 0 (4.18) 

i.e. the N = 2 supersymmetric d'Alembert equation. We can easily solve equation 
(4.18) with (4.17) which gives us 

(4.19) 

Let us present the second auto-Backlund transformation for the N = 2 supersymmetric 
Liouville equation obtained by Ivanov and Krivonos [25]. It has the following form: 

(4.20) 

(4.21) 
f " = 0 = B2 f (4.22) 

924: = 0 = 924; (4.23) 

914;=o=d,4,"  (4.24) 

where A is an arbitrary parameter. 

supersymmetric Liouville equation (2.33) while for the function h we obtain 

h =  h , + h 2 =  h,(22-ie2e2, e , )+h,( l i - ie ,e , ,  el) .  

92(41+ 42) = ( 1 / A  ) f  cosh ;(4; - 4 3  
%(41- 42) = A f "  exp 84; + 4;) 

(4.25) 

Finally let us discuss the reduction of our Backlund transformations to the N = 1 and 
N=O supersymmetric cases. The reduction from N = 2  to N =  1 can be formally 
achieved by putting 0,  = 02 = 0 and assuming that 8,  02,  4142 are real. Using this 
prescription our Backlund transformations (4.12)-(4.17) and (4.20)-(4.25) reduce to 
those given in [7] while the transformation (4.1)-(4.6) reduces to the Backlund transfor- 
mation for the N = 1 supersymmetric SU( N )  Toda lattice. The reduction from N = 1 
to N = 0 can be formally achieved by putting = O2 = 0. Then our Backlund transfor- 
mations reduces to the well known Backlund transformation. 
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